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Abstract

Temperature variations and their effects on the simulation of unsteady pipe flows, in the presence of pressure-wave induced cavitation,
were investigated with reference to high-pressure fuel injection systems. The thermal effects due to the compressibility of the liquid and to
the thermodynamic process in the cavitating flow mixture were analyzed. To that end, the energy conservation equation was applied, in
addition to the mass-continuity and momentum-balance equations, along with the constitutive state equation of the fluid. In particular,
for the liquid, the physical properties (i.e., bulk modulus of elasticity, density, isothermal speed of sound, thermal expansivity, kinematic
viscosity, specific heat at constant pressure) were implemented as functions of pressure and temperature in a closed analytical form
matching carefully determined experimental data. Consistent with virtually negligible combined effects of heat transfer and viscous power
losses involved in the flow process, the equation of energy was reduced to a state relation among the fluid thermodynamic properties,
leading to a barotropic flow model. A comparison between isentropic and isothermal evolutions in the pure liquid regions was carried
out for evaluating the influence of the temperature variation simulation on the macroscopic results given by local pressure time-histories.
Besides, for cavitation analysis, different thermodynamic transformations of the vapor–liquid mixture were considered and compared.

A recently developed conservative numerical model of general application, based on a barotropic flow model, was applied and further
assessed through the comparison of prediction and measurement results on injection-system performance.

A conventional pump-line-nozzle system was considered for this purpose, being relevant to model evaluation for its pressure-wave
dynamics and also because it was subject to severely cavitating flow conditions at part loads. Predicted time-histories of injector-needle
lift and pressure at two pipe locations were compared to experimental results. This substantiated the validity and robustness of the con-
servative model taking temperature variation effects into account, in the simulation of high-pressure injection-system transient flows with
great degree of accuracy, even in the presence of cavitation induced discontinuities. The thermal effects due to the temperature variations
in the liquid fuel and in the cavitating mixture were analyzed and discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical modeling and numerical simulation have
long been used as powerful tools for investigating the com-
plex unsteady flow phenomena that occur in high-pressure
fuel injection systems of both the conventional pump-line-
nozzle and the new generation multiple injection types
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(e.g., [1–11]). Sophisticated numerical models are necessary
to study the response of these systems to changes in design
and operating variables, particularly when severely modi-
fied working conditions are imposed by drastic changes
in the oil temperature. Besides, to prevent erosion damages
that possible cavitation occurrence can induce, the model
should also be capable of accurately predicting cavitating
flow phenomena.

Transient flow simulation in high-pressure fuel injection
systems has long been carried out with the hypothesis of
isothermal flow [1–7]. However, temperature variations
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Nomenclature

a speed of sound
A flow area
A Jacobian matrix
c specific heat along a polytropic evolution
d pipe diameter
E bulk modulus of elasticity
F spring force
F physical flux vector
h enthalpy per unit mass
H source vector
k spring stiffness; ratio between constant-pressure

and constant-volume specific heats
_lw viscous power dissipation per unit mass
L length of pipe and injector-drilled passage
m mass
p pressure; average cross-sectional pressure
_q heat transfer rate per unit mass
Q volumetric flow-rate
s entropy per unit mass
S section
t time
T temperature
u average cross-sectional velocity
v specific volume or volume per unit mass
V volume
w conservative variable vector
x axial coordinate; air gap

a void fraction
b thermal expansivity; damping
Dt time increment
Dx distance increment
f damping factor
h cam angle
l mass fraction; discharge flow coefficient
n time increment ratio
q density; average cross-sectional density
sw wall shear stress
U numerical flux vector

Subscripts

0 reference value; total enthalpy per unit mass
bs seats
d delivery outlet
i injector inlet
in chamber inlet
l liquid
m mobile element
M maximum value
n needle
out chamber outlet
p at constant pressure
T at constant temperature
s at constant entropy
v vapor phase; at constant volume
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due to the compressibility of the liquid fuel can play a sig-
nificant role in injection-system modeling. In particular,
such is the case when very high-pressure levels and remark-
able wave propagation dynamics take place throughout rel-
atively long pipes or when considerable changes in the
environmental fluid temperature sensibly alter the physical
properties of the fuel.

In [9–11] the authors took the liquid-fuel density
dependence on temperature into account for accurately
predicting pressure time-histories in both conventional
and electronically-controlled high-pressure fuel injection
systems.

Transient flows and acoustic cavitation, i.e., cavitation
induced by pressure waves, were simulated by several
numerical models, with various difficulty levels and accu-
racy degrees, in hydraulic systems [12–18].

A thermodynamic approach of general application to
pipe-flow cavitation simulation was developed in [10],
based on a simple, effective, conservative barotropic flow
model. The proposed approach incorporated, as particular
cases, the pseudo-cavitation [12–14,17–19], the pure vapor-
ous and pure gaseous cavitations as well as the pure liquid
flow, in addition to the vapor cavitation in the presence of
a dissolved gas. A physically consistent isothermal evolu-
tion was considered for the homogeneous mixture of liquid
and aeriform constituents in the pure vaporous-cavitation
model.

Numerical methods used to solve pipe-flow equations, in
addition to discretization procedures and resolution algo-
rithms for injection-system mathematical modeling were
surveyed in [5,10]. A thorough review of cavitating flow
simulation approaches is reported in [10].

In the present work, compressibility induced tempera-
ture variations were predicted in the liquid fuel of a
pump-line-nozzle diesel injection system. The nonstation-
ary distributions of the fluid thermodynamic properties
along the pressure pipes, including the injector-drilled
passage, were analyzed in order to evaluate the so
induced thermal effects in the simulation of these sys-
tems. For this purpose, the energy conservation equation
was introduced and reduced to a state relation among
the fluid intensive properties, in accordance with negligi-
ble overall effects of wall heat-transfer and viscous power
losses involved in the flow. The constitutive state equa-
tion of the liquid fuel was used for closing the set of
the model partial differential equations. To that end,
the oil physical properties were expressed as analytic
functions of pressure and temperature by fitting accurate
experimental data [10] and were introduced in the
numerical code.



Fig. 1. Measurement system layout.

Fig. 2. In-line pump.
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With regard to cavitation simulation, different thermo-
dynamic evolutions of the vapor–liquid mixture were con-
sidered, in addition to the isothermal process, so as to
reduce the energy equation to a property state-relation in
any case. Predicted pressure and void-fraction distributions
under isentropic and isenthalpic processes were compared
to those of an isothermal process.

Macroscopic thermal effects on pressure time-histories,
due to the liquid fuel compressibility and to temperature
variations during the cavitating mixture evolutions were
assessed by comparing the prediction results to the experi-
mental data taken in a conventional pump-line-nozzle die-
sel injection system, at partial and full loads. Such a system
was of particular relevance to the flow model validation,
including temperature variation effects due to: the remark-
able wave propagation phenomena taking place in the par-
ticularly long system pressure-pipes, the relatively high
values of the injection pressures at full load, and also the
severely cavitating flow conditions the system was sub-
jected to, at part loads.

2. Injection experimental system

The experimental data for model assessment were
obtained in a high-pressure fuel injection system built by
Bosch for medium-duty vehicles and made up of a pump
of the in-line type, a relatively long pressure pipe and a sin-
gle-spring injector. Measurements of the pressure time-his-
tories at two pipe locations, one close to the pump outlet
(pd) and the other close to the injector inlet (pi), were taken,
along with the injector-needle lift (ln), on a specifically
instrumented test bench. The pump run at the angular
speed of 1300 rpm and the pump governor control lever
was kept in a partial-load position first, where sensibly
cavitating pipe-flow conditions occurred and then in its
full-load position. The pump-plunger strokes were deter-
mined for both lever positions. Ensemble-averaged pres-
sure and lift data were taken. Pressures were gauged with
piezoresistive transducers and the needle lift was acquired
by means of an inductive transducer. The injection system
was operated with the test-oil ISO 4113 that is ordinarily
used to simulate diesel fuel. The oil was supplied to the
pump at a temperature of �40 �C at part and full load
operations. Fig. 1 shows a schematic of the injection-sys-
tem layout, including the acquired quantities and measure-
ment locations. Key geometrical–operational parameters
of mechanical components, relevant to the numerical
model [7], and also accurately measured oil properties were
available.

Fig. 2 shows the in-line pump with the delivery valve
assembly. This was equipped with a valve of the relief-vol-
ume type, in order to avoid injector-nozzle reopening, and
with a snubber valve for attenuating the possible cavitation
occurrence inside the pipe [20]. The plunger-lift distribu-
tions, as well as the inlet- and spill-port cross-sectional
areas, were also acquired as functions of the camshaft
angle. Fig. 3 shows the single-spring injector presenting a
nozzle of the orifice type with five holes and a reduced
sac volume.

The delivery valve is open during the injection phase
when the fluid flows from the pump to the injector. At
the end of injection, consequent to the opening of the spill
port by the pump plunger, the delivered flow motion
reverts back to the pump. The relief-volume valve has a
retraction collar, giving rise to a relief volume of
40 mm3 in the back flow during the valve closure with
the purpose of attenuating the back-flow pressure-wave



Fig. 3. Single-stage injector.
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reflection at the delivery valve head after the valve clo-
sure, so as to avoid the possible injector-nozzle reopening.
However, an excessively damped pressure-wave reflection
can be undesirable in order to hinder the cavitation that
may be caused by the depression wave subsequent to
the spill port opening. The snubber valve reduces the
depression wave harmful effects. In fact, when the spill
port opens, the snubber valve closes, leaving only a small
passage to the fluid flowing toward the delivery valve
chamber. In this way a backpressure arises in the snub-
ber-valve chamber so as to compensate for the relief-vol-
ume damping effect on the pressure-wave reflection. Thus,
the cavitation occurrence can be prevented or attenuated
although it may be still a remarkable phenomenon to be
carefully taken into account.

3. Pressure pipe model

The pipe connecting the pump to the injector, or any
transmission line in hydraulic systems, can be generally
treated as a slender pipeline for which a one-dimensional
flow model is suitable. The fluid flowing through the pres-
sure pipe is modeled as a pure liquid in the absence of cav-
itation or outside regions under cavitation. Whenever the
pressure decreases up to the vapor tension at local temper-
ature, the fluid is modeled as a homogeneous no-slip mix-
ture of liquid and vapor. In this case, the vapor is
considered to be finely distributed within the cavitating
regions or, more specifically, within each of the computa-
tional cells.
Following a conservative formulation, the pipe-flow
model equations are written in the divergence form, that
is, using a control volume approach for a pipe element with
constant cross-section, the mass-conservation and momen-
tum-balance equations can be expressed as follows:

ow

ot
þ oF

ox
¼ H ð1Þ

where

w ¼
q

qu

� �
; FðwÞ ¼

qu

qu2 þ p

� �
; H ¼

0

� 4sw

d

" #
ð2Þ

t is the time variable and x is the axial variable along the
pipe; q, u and p are the average cross-sectional density,
velocity and pressure, respectively, of either the liquid or
the homogeneous mixture; d is the internal diameter of
the pipe and sw is the wall (or boundary) shear stress, given
by sw = fqjuju/8, f being the Darcy–Weisbach resistance
coefficient [12]. Since the fluid density (q) and momentum
(qu) have been chosen as unknown variables, Eq. (1) can
be applied both in the absence and in the presence of
cavitation.

The conservation equations of only mass and momen-
tum are generally adequate for mathematically modeling
a compressible pure liquid flow or a homogeneous mixture
of liquid and gaseous constituents under the hypothesis of
isothermal evolution [1–7,12–16]. In such a case, being the
temperature specified, the additionally required state equa-
tion reduces to p = p(q).

In order to take account of the thermal effects due to the
liquid-fuel compressibility and evaluate the effects of a spe-
cific thermodynamic process on the liquid vaporization
under cavitation, the energy equation should be intro-
duced. The total (thermal and mechanical) energy conser-
vation equation can be written in the following
divergence form:

oðqh0 � pÞ
ot

þ oðqh0uÞ
ox

¼ qð _qþ _lwÞ �
4sw

d
u ð3Þ

h0 is the total (or stagnation) enthalpy per unit mass of the
fluid system, i.e., h0 = h + u2/2, _q is the heat transfer rate
per unit mass from the boundaries to the system and _lw

is the viscous power dissipation per unit mass within the
system. Combining Eq. (3) with the continuity equation
and with the following conservation equation of the
mechanical energy (obtained multiplying by u each term
of the momentum-balance equation)

1
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ou2

ot
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one obtains:

dh
dt
� 1

q
dp
dt
¼ _qþ _lw ð5Þ

Introducing the entropy, Eq. (5) gives rise to the so called
‘heat equation’, i.e., the basic thermodynamic relation
among the fluid state variables in any elemental process:
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T ds ¼ dh� dp
q

ð6Þ

where T is the local temperature and s is the entropy per
unit mass of the system. If a thermodynamic process is
specified for the fluid, Eq. (6) reduces to an equation
among the state variables. Such equation and the state
equation of the fluid p = p(q,T) close the pipe-flow model
Eq. (1), as will be specified for the two cases of pure liquid
and cavitating flows.

3.1. Pure liquid flow

The pressure p is derived from the state equation of the
liquid p = p(q,T), which can be put in the following differ-
ential form [10]:

dp ¼ a2
T dqþ bET dT ð7Þ

where aT ¼
ffiffiffiffiffiffiffiffiffiffiffi
ET=q

p
is the speed of sound at constant

temperature

b ¼ 1

v
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� �
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¼ � 1

q
oq
oT

� �
p

ð8Þ

is the volumetric coefficient of thermal expansion or the
thermal expansivity and

ET ¼ �v
op
ov

� �
T

¼ q
op
oq

� �
T

ð9Þ

is the isothermal bulk modulus of elasticity of the fluid.
Eq. (7) explicitly introduces the temperature T as an

additional variable. Thus, the further relation that is
required to close the equation set can be obtained in the
form of another state equation as follows. A virtually adi-
abatic flow and a negligible thermal effect of viscous dissi-
pation can be considered, consistently with relatively small
flow velocities, or rather a compensation can be assumed
between the small heat-transfer and viscous loss effects.
In such a case Eq. (6) yields the following thermodynamic
relation among the fluid state variables:

dh� dp
q
¼ 0 ð10Þ

For a simple system of fixed composition, as the pure liquid
is, the enthalpy fundamental equation in differential form,
arising from p, q, T, cp and b information, can be easily ver-
ified to be [10]:

dh ¼ cp dT þ ð1� bT Þ dp
q

ð11Þ

Thus, from Eqs. (10) and (11), taking aT ¼
ffiffiffiffiffiffiffiffiffiffiffi
ET=q

p
in

mind, the following nondimensional equation is obtained
linking pressure and temperature variations:

dp
ET

¼ cp

ba2
T

dT
T

ð12Þ

In the present work, this state equation was applied to eval-
uate the variations of the liquid temperature due to com-
pressibility effects, for high-pressure injection-system
simulation.

3.2. Cavitating flow

The fluid portion under cavitation can be treated as a
macroscopically homogeneous and isotropic mixture of
pure liquid and its vapor provided the amount of this latter
is very small and its bubbles are finely distributed
[5,10,15,17]. Generally, such is the case in high-pressure
fuel injection systems, even at cavitating conditions that
are considered to be severe for them [10]. Any arbitrarily
small amount of dissolved gas was neglected, according
to [5,10,17], although a general approach, including gas-
eous cavitation, was developed in [10]. The cavitating mix-
ture is treated as a pure phase at a macroscopic level by
considering average local intensive properties in it. In par-
ticular, a mechanical and thermodynamic equilibrium
model results [5,12,17] by neglecting the surface tension
and viscosity in the static bubble-wall equilibrium and tak-
ing a mass-averaged internal energy of the mixture, leading
to an average local temperature that is virtually equal to
the liquid temperature, due to the tiny amount of the
vaporous component involved. Besides, if the tiny vapor
bubbles are finely distributed, so that the mixture can be
regarded as a homogeneous and isotropic system, no slip
between liquid and aeriform constituents is reasonably
assumed. In this case, the mass and void fractions of the
vaporous phase are introduced as variables:

l ¼ mv

m
and a ¼ V v

V
ð13Þ

where mv and Vv indicate the vapor mass and volume,
respectively, m and V designate the mass and volume of
the mixture. The mass (l) and the void (a) fractions are
linked by the following relationship:

l ¼ qv

q
a ð14Þ

If the intensive properties of the mixture so characterized
are related by a thermodynamic statement describing the
evolution it is subjected to (barotropic flow model), only
one intensive property (namely q) is required to describe
its internal state. In fact, the system has one degree of free-
dom according to the Gibbs phase rule [21].

Applying the primitive definition of specific volume to
the mixture, as well as to each of its constituents, and intro-
ducing the mass fraction l of the vapor phase Eq. (13), the
homogeneous mixture density can be expressed in general
as a function of the vapor and liquid densities as well as
of the vapor mass fraction, by

q ¼ qvql

lql þ ð1� lÞqv

ð15Þ

The liquid and vapor densities in Eq. (15) are functions of
p, that is, ql = ql(p) and qv = qv(p), because in the vapori-
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zation regions the temperature T is a function of pressure,
T = T(p).

If the mixture density q is assumed as the property that
describes the so attained monovariant system, then the
vapor mass fraction l must be a function of q. This indi-
cates that Eq. (15) connects the pressure p to the density
q of the mixture, as should be for a barotropic flow. There-
fore, one can calculate the pressure gradient as follows:

op
ox
¼ dp

dq
oq
ox

ð16Þ

To obtain a general expression for the local speed of sound
in the mixture, Eq. (1) is rewritten in the following quasi-
linear form:

ow

ot
þ A

ow

ox
¼ H ð17Þ

where

A ¼
0 1

dp
dq� u2 2u

" #
ð18Þ

is the Jacobian matrix of the partial differential equation
system. As can be easily verified, the eigenvalues k of the
matrix A are

k1;2 ¼ u�

ffiffiffiffiffiffi
dp
dq

s
ð19Þ

so that the local speed of sound in the mixture results to be

a ¼

ffiffiffiffiffiffi
dp
dq

s
ð20Þ

in accordance with the thermodynamic definition of sound
speed for a fluid subjected to a specific evolution law.

From Eq. (20), taking the derivative of q (Eq. (15)) with
respect to the pressure p, the following analytical relation is
obtained for the sound speed in the cavitating mixture:

1

qa2
¼ a

qva2
v

þ 1� a
qla

2
l

� q
1

qv

� 1

ql

� �
dl
dp

ð21Þ

where av, al are the sound speeds of constituents for the
specific thermodynamic process. The first two terms on
the right hand side of Eq. (21) are related to the elasticity
properties of each component of the mixture, whereas the
last term refers to the vaporization or condensation pro-
cess, as can also be easily verified by working out the def-
inition of an effective bulk modulus of elasticity for the
mixture [10].

It should be pointed out that different authors [12,14,17–
19] neglect the last term in Eq. (21) and use the following
expression for the mixture speed of sound, with reference
to any vaporous or gaseous constituent (denoted by the
subscript g):
1

qa2
¼ a

qga2
g

þ 1� a
qla

2
l

ð22Þ

Actually, Eq. (22) refers to a two-phase mixture whose cav-
ities contain a fixed amount of an indissoluble and incon-
densable gas. Therefore, bubbles can grow or decrease in
response to changes of the liquid pressure without any
mass transfer across the bubble surface. Such a sound
speed model was referred to as pseudo-cavitation in
[10,22]. The limits and approximations in the application
of Eq. (22) to pipe-flow acoustic cavitation simulation are
analyzed in [22].

The knowledge of the derivative dl
dp is required to obtain

the local speed of sound a from Eq. (21). Thus, combining
Eqs. (6), (11) and (14) with the following expression of the
mixture enthalpy increment:

dh ¼ r dlþ ldhv þ ð1� lÞdhl ð23Þ

one obtains:

T ds ¼ r dlþ cp dT � 1

q
� 1� l

ql

ð1� blT Þ
� �

dp ð24Þ

where the subscripts v and l refer to the vapor and liquid,
respectively, cp is the average specific heat of the mixture
at constant pressure, defined by

cp ¼ lcpv
þ ð1� lÞcpl

ð25Þ

q is the mixture density, given by Eq. (14), r = r(T) is the
vapor condensation heat.

Eq. (24) and the specification of the thermodynamic
process allow modeling the vapor source term, i.e., the
derivative of l with respect to the pressure p. In particular,
for an isentropic process (ds = 0), Eq. (24) yields:

r
dl
dp
¼ 1

q
� 1� l

ql

ð1� blT Þ
� �

� cp
dT
dp

ð26Þ

whereas, for an isenthalpic process (dh = 0) one has

r
dl
dp
¼ � 1� l

ql

ð1� blT Þ � cp
dT
dp

ð27Þ

Finally, if the assumption of isothermal process (dT = 0) is
made for the cavitating region, the pressure assumes the
constant value of the vapor tension at the specified temper-
ature there, so that qv and ql are determined. Thus, Eq. (15)
directly relates the vapor mass fraction l to the mixture
density q, so that the increment of l is related to the mix-
ture density variation by

dl ¼ � qvql

ql � qv

dq
q2

ð28Þ

Since l takes variable nonnegative values, its derivative
with respect to p tends to infinite. Thus, Eq. (21) leads to
a = aT ? 0 which means that in effect the sound speed of
the fluid under the isothermal cavitation process is negligi-
bly small.

In the present work, an isothermal evolution was
selected to simulate the cavitating flow, on the ground of:



Fig. 4. Model of pump and injector.
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the tiny vaporizing liquid amount; the simplicity and accu-
racy of such evolution in capturing macroscopical effects;
the conservativeness of it in the vapor amount prediction
with respect to isentropic or isenthalpic processes, as will
be shown further on. Therefore, in the vapor–liquid mix-
ture under cavitation, the pressure and temperature keep
at constant values, whereas the mixture density is still var-
iable and is numerically calculated by solving the system of
Eq. (1). The q value thus obtained was used to work out the
void fraction

a ¼ ql � q
ql � qv

ð29Þ

As a result, during cavitation the compressibility of the
mixture is related to the phase change, rather than to the
elastic properties of the fluid.

3.3. Effect of pipe wall elasticity

Considering the elastic properties of the pipe material,
one can take the fluid-structure interaction into account
by introducing the effective bulk modulus Eeff and sound
speed aeff as follows:

1

Eeff

¼ 1

qa2
eff

¼ � 1

V
dV
dp
� 1

V
dV pipe

dp
ð30Þ

where V is the fluid volume and Vpipe the volume delimited
by the internal pipe diameter. In agreement with Eq. (21),
one can set:

1

qa2
¼ � 1

V
dV
dp

ð31Þ

Substitution of Eq. (31) into Eq. (30) leads to the following
relation:

1

qa2
eff

¼ 1

qa2
� 1

V
dV pipe

dp
ð32Þ

The second term on the right hand side of Eq. (32) takes
the pipe elasticity effects into account. From stress and
strain considerations, for a thin-walled pipe one obtains [5]:

� 1

V
dV pipe

dp
¼ C � d

Ep � e
ð33Þ

where Ep is the Young modulus of elasticity of the pipe
material, d is the pipe internal diameter, e is the pipe wall
thickness and C is a constraint factor, which depends on
the support conditions of the pipe. According to Eqs.
(30)–(33), the effective sound speed aeff decreases with re-
spect to a when the ratio of d/e increases and thus the stiff-
ness of the transmission line reduces. For d/e lower than 5,
as in the present case, the pipe is not considered to be thin-
walled and the contribution of the term 1/V � dVpipe/dp to
the value of aeff is drastically reduced. The commercial
high-pressure pipe of an in-line-pump diesel fuel-injection
system can have d/e ratios between 2 and 1.5. Conse-
quently, the effect of the fuel-line elasticity on the oil speed
of sound is negligible, so that it is possible to set aeff � a [5].
4. Pump and injector

The pressure-wave propagation along the injector-
drilled passages was simulated by the foregoing pipe-flow
model, whereas a lumped mass model was applied to write
the continuity equations for the pump and injector isobaric
chambers. Further details on the rebuilt injection-system
model are given in [23].

The chambers are numbered according to the model of
Fig. 4, so that, with reference to a generical chamber j,
one can write:

Qin;j � Qout;j ¼
1

qj

dqj

dt
V j þ

dV j

dt
ð34Þ

where for j = 1, 2, 3, 5 the volumetric flow-rate coming into
the chamber j is given by

Qin;j ¼
pj�1 � pj

jpj�1 � pjj
lin;jAin;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

qj
jpj�1 � pjj

s
ð35Þ

and for j = 1, 2, 4, 5 the volumetric flow-rate going out of
the chamber j is given by

Qout;j ¼
pj � pjþ1

jpj � pjþ1j
lout;jAout;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

qj
jpj � pjþ1j

s
ð36Þ

Valve flow coefficients were taken according to [7], whereas
for the injector nozzle holes unsteady flow coefficients were
used, on the basis of specific experiments [24,25]. It should
be pointed out that Qout,3 and Qin,4 were regarded as vari-
ables at the boundaries of the pipe including the injector-
drilled passage.

The valve dynamics (the injector needle is also referred
to as the nozzle valve) were simulated according to a sec-
ond-order linear-system model, as illustrated in Fig. 5:

mm

d2lm

dt2
þ �bm

dlm

dt
þ �kmlm þ �F 0 ¼

X
k

pkSmk ð37Þ

where
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lm < 0; �km ¼ km þ kbs; �bm ¼ bm þ bbs; �F 0 ¼ F 0;

0 6 lm 6 lM ; �km ¼ km; �bm ¼ bm; �F 0 ¼ F 0;

lm P lM ; �km ¼ km þ kbs; �bm ¼ bm þ bbs;

�F 0 ¼ F 0 � kbs � lM
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bm ¼ 2fm
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Fig. 8. Isothermal speed of sound: Eq. (42) (solid lines) versus experi-
mental results (symbols).
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5. ISO 4113 oil properties

The physical properties (i.e., bulk modulus of elasticity,
density, isothermal speed of sound, thermal expansivity,
kinematic viscosity, specific heat at constant pressure) of
the test-oil ISO 4113, simulating the diesel fuel, are
reported in Figs. 6–11, as dependent variables of pressure
and temperature. More specifically, the properties are
expressed by analytical functions of the pressure p, taking
the temperature T as parameter. The figures compare the
experimental data (symbols) to the model equations (solid
lines) that were implemented in the numerical code.

The isothermal bulk modulus of elasticity is accurately
described by the following empirical linear equation:

Eðp; T Þ ¼ ETðpÞ ¼ E0ðT Þ þ vðT Þðp � p0Þ ð39Þ
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Fig. 6. Bulk modulus of elasticity: comparison between experimental data
(symbols) and Eq. (39) results (solid lines).
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Fig. 9. Thermal expansivity.
where p0 is a reference pressure, E0(T) is the value of the
liquid elasticity modulus at pressure p0 and temperature
T. The analytical relations E0(T) and v(T) are reported in
[23]. A plot of Eq. (39) and of experimental data at four
temperatures in the range of interest for the present study
is given by Fig. 6.

In order to obtain the relation between the oil density
and pressure, let us start from the definition of the bulk
elasticity modulus of Eq. (9), which gives
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Fig. 11. Specific heat at constant pressure: comparison between experi-
mental (symbols) and analytical (Eq. (45)) results.

Fig. 12. Ratio between cp and cv.
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op
oq

� �
T

¼ ETðpÞ
q

ð40Þ

A direct integration of this equation yields

qðp; T Þ ¼ qTðpÞ ¼ q0ðT Þ
ETðpÞ
E0ðT Þ

� � 1
vðT Þ

ð41Þ

where q0(T) is the liquid density value at p = p0, as a func-
tion of T [23]. The density distributions versus pressure are
plotted in Fig. 7 for the indicated temperatures.

The isothermal sound speed of the liquid, as a function
of pressure and temperature, is given by

aðp; T Þ ¼ aTðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ETðpÞ

q

s
ð42Þ

The comparison between Eq. (42) outcome and measure-
ment data is presented in Fig. 8, showing again a very good
agreement between analytical and experimental results.

The volumetric coefficient of the liquid thermal
expansion

bðp; T Þ ¼ � 1

q
oq
oT

� �
p

ð43Þ

was determined by differentiation of Eq. (41) with respect
to the temperature. A slight dependence of b on tempera-
ture is shown in Fig. 9, plotting b versus pressure at
40 �C and 100 �C.

A good analytical expression for the oil kinematic vis-
cosity (Fig. 10) is provided by the following quadratic
polynomial:

mðp; T Þ ¼ g0ðT Þ þ g1ðT Þp þ g2ðT Þp2 ð44Þ
where g0, g1, g2 are power functions of the temperature
[23].

The specific heat at constant pressure of the test oil is
very well approximated by the following cubic expression:

cpðp; T Þ ¼ c0ðT Þ þ c1ðT Þp þ c2ðT Þp2 þ c3ðT Þp3 ð45Þ

in which c0, c1, c2, c3 are growing quadratic functions of the
temperature T, fitting the measured data. The agreement of
Eq. (45) results with experimental data is presented in
Fig. 11.

Fig. 12 plots the ratio k of the specific heat at constant
pressure to that at constant volume, expressed by

k ¼ cp

cv

¼ 1� ðbaTÞ2

cp
� T

" #�1

ð46Þ

as a function of the pressure p at different temperatures T.
The values of k have been worked out by Eq. (46) using
Eqs. (42), (43) and (45). As can be inferred from Fig. 12,
for liquid fluids k assumes smaller values than those that
are typical of gaseous flows. Nevertheless, it is always sen-
sibly different from unity. From Eqs. (45) and (46) one can
calculate cv as a function of p and T.

6. Numerical algorithm and solution

A new finite-volume scheme was proposed to discretize
the system of hyperbolic partial differential equations,
given by Eq. (1). It is an implicit, conservative, one-step,
symmetrical and trapezoidal scheme of the second-order
accuracy, which will also be referred to by the acronym
ICOST (Implicit Conservative One-step Symmetric Trape-
zoidal scheme [10,23]). Consistent with a finite-volume
approach [26,27], the ICOST scheme can be expressed in
the form:
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where the subscript j refers to the spatial grid locations, the
superscript n designates the time level, U is the numerical
flux function defined as

U
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2

jþ1
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j�1 Þ

h i
A is the Jacobian matrix of the flux vector F = F(w) (Eq.
(18)).

At the pipe boundaries, upwind schemes were applied
on the basis of characteristic considerations.

From the Von Neumann stability analysis of the ICOST
difference approximation to the linear wave equation, it
follows that the proposed scheme can be considered to be
unconditionally stable. Thus, it was possible to select the
mesh sizes Dt and Dx paying specific attention to accuracy
requirements. In order to prevent numerical oscillations
around discontinuities, second-order schemes usually
introduce flux limiters [26,27], but the high-resolution
schemes so obtained are more cumbersome to apply than
those without limiters are. In the present work, the imple-
mentation of the high-resolution version of the ICOST
scheme [23] does not involve differences in the simulation
of the macroscopic effects with respect to the case without
limiters. In particular, as will be shown by the results (Figs.
16 and 17b), in the presence of flow discontinuities induced
by cavitation inception and desinence, no significant oscil-
lation problems were caused by the ICOST scheme. On the
other hand, available nonoscillatory schemes are either of
the explicit type or too onerous to apply to injection sys-
tems, or are nonconservative [7,27–29]. Nevertheless, non-
conservative schemes can yield satisfactory results at a
macroscopic level, by properly handling the numerical
solution of the split equations for the liquid and cavitating
regions [5,7], particularly when slightly cavitating flows
occur.

The choice of an implicit scheme is motivated in what
follows. To discretize the ordinary differential equations
modeling pump and injector dynamics, BDF (Backward
Differentiation Formulas) of the second-order accuracy
were used, being suitable for problems of the stiff type
[5,10]. At each time step the primitive variables q, u, were
derived from the conservative variables q, qu, used to dis-
cretize Eq. (1) in both cases of the presence and absence
of cavitation. In order to determine also the variables p

and T, for the pure liquid flow Eq. (1) was solved conjunc-
tly with the state Eqs. (7) and (12). For the cavitating flow,
the state equation p = pv(T) was used to close Eq. (1) in the
isothermal approach, pv being the vapor pressure at tem-
perature T. In the case of isentropic or isenthalpic evolu-
tions, Eq. (15), taking p = pv(T), was applied for closure
in conjunction with Eq. (26) or (27), respectively. A robust
and accurate numerical algorithm was attained, capable of
matching the nonstationary pipe fluid-dynamics to the
dynamics of mechanical components at pipe boundaries.

7. Results

The predicted performance of the in-line pump injection
system, in terms of needle lift distribution and pressure
time-histories at two pipe locations, one close to the pump
delivery outlet and the other close to the injector inlet, are
given in Fig. 13 for two engine loads at the same pump
speed of 1300 rpm [10]. The numerical results (solid line)
are compared to the experimental data (circle symbol).
The camshaft angle (h � h0) is reported as abscissa, h0

being a reference angle.
The good agreement between computed and measured

quantities evidenced by these results shows a quite satisfac-
tory accuracy degree of the injection-system mathematical
model including thermal effects.

Fig. 13a–c illustrate the injection-system performance at
part load. Fig. 13a displays a sensible cavitation occurrence
at the pipe inlet (pump delivery). The liquid pressure
reaches the vapor-tension value at the cam angle
h � h0 � 11� and keeps very low until the pressure wave
coming back from the injector sweeps out the region under
cavitation, increasing the pressure there. The fluid leaves
the tiny pressure conditions at h � h0 � 19�. As can be
inferred from this figure, the model is capable of predicting
with a good accuracy the duration of the very small pres-
sure event and the intensity of the subsequent pressure
peaks. This substantiates the validity of the conservative
model for simulating wave propagation phenomena in
the presence of cavitation.

The pressure peak in Fig. 13b has a higher value than
that of the previous figure because it is affected by an
accumulation effect due to the flow area reduction in the
injector-drilled passage. Besides, due to the wave propaga-
tion with the compressibility driven sound speed, the pres-
sure peak shows a time delay with respect to that of
Fig. 13a. The comparison in Fig. 13c further validates
the injector model, where the needle valve is treated as a
second-order linear system. The small oscillations arising
when the needle reaches its maximum lift and when the
needle closes are due to the impact of the mobile element
against the basement. No reopening of the needle valve is
observed.

Fig. 13d–f shows the comparison between numerical and
experimental results at full load. In Fig. 13d and e the pres-
sure peaks present higher values than those of the corre-
sponding diagrams at partial load, because of the greater
pump-plunger useful stroke. The temporal delay of the
pressure peak in Fig. 13e with respect to the peak in
Fig. 13d is smaller than the corresponding one shown by
Fig. 13b and a. This is due to the prevailing effect of the
substantially higher pressure levels at full load, being the
sound speed an increasing function of the pressure
(Fig. 8). Besides, although cavitation occurs also at full
load, it is not so intense and diffuse as at part load.
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Fig. 13. Comparison between numerical and experimental results.
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Fig. 14 shows a comparison between isentropic- and iso-
thermal-flow simulations for both part and full loads at the
same pump speed as above. It is worth pointing out that
the pressure wave propagation in the pure liquid flow is
closer to an isentropic event rather than to an isothermal
one. Actually, a compression of nearly 400 bar leads to
an increase of the oil temperature of more than 5 �C. The
solid lines in Fig. 14 match those reported in Fig 13. The
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Fig. 14. Comparison between isentropic and isothermal evolutions.
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dashed lines in Fig. 14 were obtained at the initial-temper-
atures of the fluid, i.e., �46 �C at part load and �58 �C at
full load.

As can be inferred from Fig. 14, if temperature varia-
tions in the liquid are neglected, at measurement locations
an estimation error in the pressure peak of nearly 50 bar
can occur at part load (Fig. 14a and b) and of roughly
90 bar at full load (Fig. 14c and d). By comparison of the
isentropic and isothermal results in the injector pressure
chamber (not reported here), differences of up to 70 bar
and of up to 120 bar were observed at part load and at full
load, respectively. Moreover, the lower pressure levels of
the isothermal evolution take account of the slower wave
propagation motion, which causes the delay shown by
the dashed lines with respect to the solid lines. However,
it should be pointed out that small thermal effects were per-
ceived in previous injection-system isothermal-flow predic-
tions with respect to experimental results. This could be
ascribed to the lower pressure levels and to the relatively
short connecting pipes in the pump-line-nozzle systems
which were considered [7].

Fig. 15 reports significant sequences of flow-property
distributions along the pipe at full load, illustrating wave
propagation phenomena for an isentropic (Fig. 15a) and
an isothermal (Fig. 15b) evolution of the pure liquid flow.
The abscissa reports the distance from the pump outlet,
normalized to the length (L) of the connecting pipe and
of the injector-drilled passage. The plots show pressure,
flow-rate and temperature distributions along the pipe at
different instants of time, corresponding to the indicated
cam-angle coordinates h � h0. As can be easily inferred
from results at h � h0 = 13.5�, the isothermal evolution
corresponds to a delay in wave propagation due to lower
values of the isothermal sound speed with respect to the
isentropic one as ¼

ffiffiffi
k
p

aT [10].
Fig. 16 plots sequences of flow properties (namely, pres-

sure, temperature and void fraction) along the pipe at full
load in the presence of cavitation. At a pipe location close
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Fig. 15. Pure liquid flow.
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Fig. 16. Flow evolution along the pipe in the presence of cavitation.
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Fig. 17. Flow evolution along the pipe, in the absence (a) and presence (b) of cavitation.
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Fig. 18. Comparison between different models of cavitation evolution.
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to the injector, Fig. 16a shows the cavitation inception
caused by a rarefaction wave subsequent to the end of
the injection phase. An interesting case of cavitation col-
lapse is illustrated in Fig. 16b, where the void fraction in
the cavitation region is swept away by pressure waves com-
ing from both sides of this region. Because of the presence
of two colliding flows, pressure and temperature peaks
arise in the cavitation region when this disappears. This
is illustrated by the last picture in Fig. 16b. As previously
mentioned, during cavitation an isothermal process was
considered, so that both temperature and pressure keep
constant throughout the cavitating region, as is shown in
Fig. 16. Two surfaces of discontinuity, separating the liquid
from the cavitating regions, are visible in Fig. 16b. These
discontinuities can be identified as shocks. In fact, the
sound speed drops from the value al to zero across the dis-
continuities towards the cavitation region. Thus the super-
sonic flow existing at a pipe location inside such a region
becomes subsonic when a liquid pressure wave crosses that
location. Consequently, a shock takes place [10]. However,
in Fig. 16a there is no evidence of any shock occurrence,
because the subsonic flow at a certain pipe location
becomes supersonic when such a location is reached by
the cavitation. Therefore, a rarefaction wave is observed,
instead of a shock.

Fig. 17 reports the flow-property distributions along the
pipe for the same pump speed of 1300 rpm, but at part
load. More specifically, Fig. 17a shows the pure liquid flow
after the opening of the pump delivery valve and before the
start of the injector-needle lift, whereas Fig. 17b illustrates
the inception and subsequent evolution of cavitation dur-
ing the rising of the needle valve up to its maximum lift.
The rarefaction wave responsible for the cavitation occur-
rence is caused by the spill-port opening.

Fig. 18 shows the thermal effects that are related to the
different thermodynamic evolutions the vapor mixture
undergoes in the cavitation simulation. For the pure liquid
flow, an isentropic process was assumed in all the cases that
are shown in the figure, whereas inside the cavitating region
three different transformations, that is, isothermal, isentro-
pic and isenthalpic processes, were simulated for
comparison.

The specific thermodynamic transformation of the
vapor–liquid mixture gives rise to differences in the pre-
dicted void-fraction amount; in particular the void-fraction
values obtained under the isothermal flow hypothesis were
larger than the values resulting from the assumption of
isenthalpic and isentropic transformations. It is worth
pointing out that for the isenthalpic evolution higher values
of the void fraction were found with respect to the isentro-
pic one, according to the results obtained in simple pipeline
test cases by other authors [17]. This is consistent with the
patterns of these thermodynamic processes in the two-
phase region of the T-s diagram for a pure substance.

Furthermore, the isentropic and isenthalpic evolutions
produce very similar results because, close to the liquid sat-
uration curve, these transformations are virtually similar in
a very small range of pressure variations.

However, owing to the very small amount of vaporizing
liquid usually involved in cavitation phenomena, such
diversity in the computed void-fraction amounts does not
affect the evolution of the other variables (pressure, flow-
rate and temperature) in the surrounding liquid zones.

8. Conclusion

Temperature variations and their effects on the simula-
tion of transient flows in high-pressure fuel injection sys-
tems were evaluated for both flow cases of pure liquid
and of vapor–liquid mixture under acoustic cavitation,
i.e., pressure-wave induced cavitation. More specifically,
the thermal effects due to the compressibility of the liquid
fuel and to the particular thermodynamic evolution of
the cavitating mixture were analyzed.

A recently developed conservative numerical model of
general application to both liquid and homogeneous two-
phase flows, based on a barotropic flow model, was used
and assessed at a macroscopic level by comparing predicted
and experimental results on a diesel pump-line-nozzle injec-
tion-system performance.
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The temperature variations associated either to the com-
pressibility of the liquid fuel or to the cavitating region evo-
lution, were computed by applying the thermal energy
conservation equation. Consistent with negligible or glob-
ally compensating effects of the wall heat transfer and vis-
cous power losses involved in the flow process, the energy
equation was reduced to a state relation among the fluid
thermodynamic properties, leading to the barotropic flow
model. The numerical results indicated that temperature
variations in the pure liquid flow can play a sensible role
in the accuracy of transient-flow simulations within high-
pressure injection systems. In fact, such thermal effects
influenced the prediction of pressure peaks amplitude and
therefore also the speed of the traveling waves with the
consequence of shifts in the local pressure time-histories.
Such effects are so more important as higher the pressures
and the pipe lengths are.

With reference to cavitation simulation, different ther-
modynamic evolutions of the vapor–liquid mixture were
considered, in addition to the isothermal process, so that
the energy equation reduced to a state-relation among
the fluid properties in any case. In particular, the macro-
scopic effects of isentropic and isenthalpic processes on
pressure distributions were compared to those of an iso-
thermal process.

It was shown that the specific thermodynamic evolution
selected for cavitation modeling does not play a major role
on the macroscopic results of the injection-system simula-
tion. Actually, the pressure distributions are not signifi-
cantly influenced by the variations in the void fraction
produced by the different evolutions. Thus, an isothermal
process was chosen because it is physically consistent with
negligible temperature variations related to the tiny vapor-
izing liquid amount, and it is also very simple to be numer-
ically handled. Besides, an isothermal transformation was
shown to be the most conservative one with reference to
the highest amount of void fraction production.

The second-order accurate conservative numerical
scheme proposed to discretize the PDE system modeling
the pipe flow proved to be capable of simulating the wave
motion with a great accuracy degree, even in the presence
of cavitation induced discontinuities. The developed math-
ematical model is capable of analyzing unsteady flows
using the same hyperbolic equations both in the absence
and in the presence of cavitation.
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